除了在自己已存在的等離子體以外,用人工方法在一定范圍內也可以制得等離子體。最早是在1927年,當水銀蒸氣在高壓電場中的放電時由科研人員發現等離子體。后面的發現是通過多種形式,如電弧放電、輝光放電、激光、火焰或者沖擊波等,都可以使處于低氣壓狀態的氣體物質轉變成等離子體狀態。
如在高頻電場中處于低氣壓狀態的氧氣、氮氣、甲烷、水蒸氣等氣體分子在輝光放電的情況下,可以分解出加速運動的原子和分子,這樣產生的電子和解離成點有正、負電荷的原子和分子。這樣產生的電子在電場中加速時會獲得高能量,并與周圍的分子或原子發生碰撞,結果使分子和原子中又激發出電子,而本身又處于激發狀態或離子狀態,這時物質存在的狀態即為等離子體狀態。等離子體發生器(plasma generator)用人工方法獲得等離子體的裝置。等離子體由自然產生的稱為自然等離子體(如北極光和閃電),由人工產生的稱為實驗室等離子體。實驗室等離子體是在有限容積的等離子體發生器中產生的。 等離子體發生器的放電原理:利用外加電場或高頻感應電場使氣體導電,稱為氣體放電。氣體放電是產生等離子體的重要手段之一。被外加電場加速的部分電離氣體中的電子與中性分子碰撞,把從電場得到的能量傳給氣體。電子與中性分子的彈性碰撞導致分子動能增加,表現為溫度升高;而非彈性碰撞則導致激發(分子或原子中的電子由低能級躍遷到高能級)、離解(分子分解為原子)或電離(分子或原子的外層電子由束縛態變為自由電子)。高溫氣體通過傳導、對流和輻射把能量傳給周圍環境,在定常條件下,給定容積中的輸入能量和損失能量相等。電子和重粒子(離子、分子和原子)間能量傳遞的速率與碰撞頻率(單位時間內碰撞的次數)成正比。在稠密氣體中,碰撞頻繁,兩類粒子的平均動能(即溫度)很容易達到平衡,因此電子溫度和氣體溫度大致相等,這是氣壓在一個大氣壓以上時的通常情況,一般稱為熱等離子體或平衡等離子體。在低氣壓條件下,碰撞很少,電子從電場得到的能量不容易傳給重粒子,此時電子溫度高于氣體溫度,通常稱為冷等離子體或非平衡等離子體。兩類等離子體各有特點和用途(見等離子體的工業應用)。氣體放電分為直流放電和交流放電